Skip to Main Content

Ag faculty member devising new drug delivery tactic for citrus greening disease

Purdue University’s Kurt Ristroph has received a $1 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture to develop nanocarriers as an antibiotic delivery system to help plants fend off citrus greening disease.

More formally known as Huanglongbing (HLB), citrus greening disease has left the Florida citrus industry in nearly total ruin since 2005. Spread by the Asian citrus psyllid, an insect that resembles aphids, the disease also has afflicted citrus trees in California and Texas. 

“The mixing technology we’re using to make nanocarriers is the same that has been used by pharmaceutical companies like Pfizer,” said Ristroph, assistant professor of Agricultural and Biological Engineering. Collaborating on the project with Ristroph are Greg Lowry, Carnegie Mellon University in Pittsburgh; Arnold Schumann, University of Florida; and Philippe Rolshausen, University of California, Riverside.

HLB bacteria live inside the trunks and roots of trees, attacking their vascular systems. Previous attempts to kill the bacteria with antibiotics have failed.

“It’s difficult to reach the location in the tree trunk where the bacteria live,” Ristroph said. The bacteria live in the phloem of a tree’s vascular system.

“Humans have veins and arteries. Plants have xylem and phloem,” Ristroph explained. One approach has been to bore a hole into the tree trunk and inject the antibiotics with a syringe, “but you don’t have a good guarantee that you’re going to the phloem. And if you don’t, then you’ve just done a lot of damage to your tree.”

Assistant Professor, Kurt Ristroph holds too vials. Kurt Ristroph, assistant professor of Agricultural and Biological Engineering, holds two vials of nanocarrier treatments being tested for treatment of plant diseases. (Photo Credit: Tom Campbell)

Another issue: the bacteria live in the phloem of both the trunks and the roots. But if an injection kills only the bacteria in the trunk, they can repopulate from the roots back into the tree.

“We’ve shown that our nanocarriers, at least in another plant system, can get into the phloem and down to the roots. If we make our nanocarriers encapsulate an antibiotic that will kill this disease, then put them on the leaves of a tree. We think they’ll go inside the tree, down the phloem to the roots and they’ll release their antibiotic drug along the way. Maybe it can kill all the bacteria and maybe it can cure the disease,” Ristroph said.

Ristroph completed his Ph.D. in chemical engineering and materials science at Princeton University. He specialized in pharmaceutical formulation—packaging an existing drug molecule into a new form to improve its function. If a drug doesn’t readily dissolve in the mouth, for example, the drug can be reformulated into a form that can be given orally.

At Princeton, Ristroph developed nanocarriers for human drug delivery. He used a technology called “Flash NanoPrecipitation” that his Ph.D. adviser, Robert Prud’homme, developed as a large-scale way of making nanocarriers. The nanocarriers consist of a core—the drug awaiting delivery—and a shell that encloses it.

After completing his Ph.D., Ristroph became a Schmidt Science Postdoctoral Fellow. Schmidt Fellowships are designed for scientists who wish to switch from their Ph.D. field into another specialty.

“My proposal for the postdoc was to pivot from human drug delivery to plant drug delivery, to see if this large-scale formulation for making drug nanocarriers can be used in agriculture,” Ristroph said. “And it’s not just drugs for plants. Plants need all kinds of agrochemicals. They need fertilizers and pesticides, hormones and sometimes antibiotics.”

During his postdoctoral research with Greg Lowry at Carnegie Mellon, they obtained some promising preliminary data suggesting that nanocarriers made by Flash NanoPrecipitation can get into plants and move around. They began to look for an incurable plant disease and came across citrus greening. So now, with the USDA grant, Ristroph and his collaborators will work to use nanocarrier formulations for drug delivery to plants rather than people. Many challenges still await.

“We’re using antibiotics that have already been approved for citrus greening. We have to get them where they need to go in the plant,” he said. “We’re going to have to be incredibly effective to show that we can cure the trees.”

Ristroph’s efforts are driven in part by his family’s agricultural background in southern Louisiana, where his parents own and operate a sugarcane farm.

“As we were working on this process in grad school, I was thinking, this is really large scale and it’s low cost per unit. I wonder if this could do some good in the ag world?”

Ristroph received the USDA grant only two months after he joined the Purdue faculty last August. Already he has already built a research group consisting of one postdoctoral scientist, three graduate students and two undergraduates. Half the group works on drugs for plants, while the other half works on drugs for people.        

“I’m very fortunate because there’s a lot of work to do,” he said.

Featured Stories

Seed oil in grocery store
Majority of consumers perceive seed oils as safe, but health concerns rise

Most consumers are somewhat familiar with seed oils, but overall, they feel unsure or neutral...

Read More
Four maps depicting maximum levels of PFAS — PFOA, PFHxS, PFOS and PFNA — in drinking water across all Indiana counties based on data from the Indiana Department of Environmental Management.
Purdue’s Institute for a Sustainable Future publishes first look at ‘forever chemicals’ statewide

Purdue University’s Institute for a Sustainable Future (ISF) has released the first Indiana...

Read More
Student working on manufacturing food.
First-quarter Agrifood Economy Index shows acute downturn in industry confidence

The March edition of the Agrifood Economy Index reveals a pronounced downturn in industry...

Read More
Mary Schultz stands in front of a horse paddock at the Purdue vet hospital
How do landscape architects design spaces for animals?

The Purdue University Veterinary Hospital (PVH) offers specialized medical care to both small and...

Read More
interns
Franklin Pest Solutions Sponsors Two 2025 Bug Bowl Interns

Franklin Pest Solutions sponsored two interns, Aiden Bemis and Colleen Murphy, at the 2025 Purdue...

Read More
Elena Boughton holds a bird while bird banding; Elena holds a snapping turtle at Summer Practicum; Elena sits atop a mountain in Costa Rica.
Meet FNR Outstanding Junior Elena Boughton

Wildlife major Elena Boughton has been selected as FNR’s Outstanding Junior for 2024-25....

Read More
To Top