Skip to Main Content

Purdue scientist develops method to identify thousands of protein complexes and their location, in one shot

Identifying proteins, the machinery responsible for most of the tasks done in cells, and how they interact with each other is key to improving plants. Using traditional methods, scientists can identify a single protein, which may be one of thousands they want to learn about.

Purdue University research has led to a method for getting at harder-to-reach proteins and identifying thousands of them at one time. The discovery may speed up the ability to understand complex protein interactions and how they control functions such as growth, tolerance to heat and drought, and yield.

Quantitative proteomics is a method to analyze thousands of protein complexes in a single profiling experiment. This has been done only with soluble proteins in the cell that are not attached to a membrane surface.

“About 70 percent of proteins in a plant are associated with membranes. That’s an insoluble pool of proteins with important transport and signaling functions in the cell” said Dan Szymanski, a Purdue professor of Botany and Plant Pathology, whose research was published in the journal Molecular & Cellular Proteomics.

Szymanski and his graduate student Zach McBride used detergents to solubilize those proteins. The method makes them identifiable and quantifiable without degrading their protein structures.

The researchers were able to identify hundreds of large protein complexes — through a process called label-free proteomics. The approach measures native proteins from the cell using mass spectrometry and does not require antibodies to quantify the amount of a protein.

Identifying hundreds or thousands of protein complexes in parallel is key to understanding how complex functions in the plant are controlled. The location of a protein in the plant cell, as well as the proteins that it binds to, will alter that protein’s function.

“In cells, thousands of protein complexes work in a coordinated way to allow the plant to grow and adapt to changing environmental conditions. This method will allow us to analyze how protein complexes function as part of an adaptable network. ” Szymanski said.

Szymanski said he plans to study how protein complexes and plant growth change in response to challenging environmental conditions.

Featured Stories

Shopping cart in store
Consumers see food prices as rising more than other goods and services, find ways to adapt

More than 80% of consumers perceive that food prices have increased a little or a lot over the...

Read More
Chris Wirth holding bug specimen
Behind the Research: Chris Wirth

Many people are involved in the remarkable range of programs, services and facilities that...

Read More
Purdue College of Agriculture.
Farmer sentiment recovers in May; interest in solar leasing rising

U.S. farmers’ outlook improved in May as the Purdue University/CME Group Ag Economy...

Read More
Ken Fuelling leans against a brown pole in an empty classroom. Empty chairs and a blank projector screen fill the background.
Promoting acceptance in agricultural education

Ken Fuelling (he/they) had already been accepted into graduate school to work with Sarah LaRose...

Read More
Composting bins outdoors
Unlocking the benefits of composting: tips for a greener garden

For centuries, gardeners have provided nutrients to plants through composting, but Karen...

Read More
Sarah Stanhope
Sarah Stanhope - Graduate Ag Research Spotlight

Sarah Stanhope likes investigating things: “I always asked a lot of questions,” she...

Read More
To Top