Purdue scientist develops method to identify thousands of protein complexes and their location, in one shot

Identifying proteins, the machinery responsible for most of the tasks done in cells, and how they interact with each other is key to improving plants. Using traditional methods, scientists can identify a single protein, which may be one of thousands they want to learn about.

Purdue University research has led to a method for getting at harder-to-reach proteins and identifying thousands of them at one time. The discovery may speed up the ability to understand complex protein interactions and how they control functions such as growth, tolerance to heat and drought, and yield.

Quantitative proteomics is a method to analyze thousands of protein complexes in a single profiling experiment. This has been done only with soluble proteins in the cell that are not attached to a membrane surface.

“About 70 percent of proteins in a plant are associated with membranes. That’s an insoluble pool of proteins with important transport and signaling functions in the cell” said Dan Szymanski, a Purdue professor of Botany and Plant Pathology, whose research was published in the journal Molecular & Cellular Proteomics.

Szymanski and his graduate student Zach McBride used detergents to solubilize those proteins. The method makes them identifiable and quantifiable without degrading their protein structures.

The researchers were able to identify hundreds of large protein complexes — through a process called label-free proteomics. The approach measures native proteins from the cell using mass spectrometry and does not require antibodies to quantify the amount of a protein.

Identifying hundreds or thousands of protein complexes in parallel is key to understanding how complex functions in the plant are controlled. The location of a protein in the plant cell, as well as the proteins that it binds to, will alter that protein’s function.

“In cells, thousands of protein complexes work in a coordinated way to allow the plant to grow and adapt to changing environmental conditions. This method will allow us to analyze how protein complexes function as part of an adaptable network. ” Szymanski said.

Szymanski said he plans to study how protein complexes and plant growth change in response to challenging environmental conditions.

Featured Stories

Christopher Uribe participates in undergraduate research
From curiosity to care

As a first-generation college student, Christopher Uribe was looking for an environment that...

Read More
Mark Russell photograph taken in the Purdue Union
More than a horseman: Mark Russell’s lifelong commitment to helping others grow

For some people at Purdue, he is known as a horse expert, a respected colleague who listens, a...

Read More
Student and professor in the laboratory.
Purdue team announces new therapeutic target for breast cancer

A Purdue University team led by Kyle Cottrell has discovered a new therapeutic target for...

Read More
Angie Abbott, Purdue announces new Extension director
Purdue announces new Extension director

Bernie Engel, the Glenn W. Sample Dean of Agriculture, has appointed Angie Abbott as associate...

Read More
Customers standing in checkout line at grocery store
Consumer Food Insights survey assesses 2025 grocery spending

Consumers made substantial changes to their grocery shopping in 2025, largely driven by economic...

Read More
Forest Point Cloud
AI helps find trees in a forest: Researchers achieve 3D forest reconstruction from remote sensing data

Existing algorithms can partially reconstruct the shape of a single tree from a clean point-cloud...

Read More