Skip to Main Content

DOE funds Purdue’s photosynthesis repair research

“Life is bottled sunshine” –  Wynwood Reade, Martyrdom of Man, 1924.

Every drop of energy humans consume originates from sunlight. The plants we eat capture the sun’s energy through photosynthesis, and the animals we eat are fed by plants.

But the thing that makes all that life possible is the same thing that can break plants’ ability to photosynthesize. Too much light can wreak havoc on a plant’s photosystem II, a molecular nanomachine that extracts electrons from water in photosynthesis. The damage to photosystem II affects photosynthetic efficiency and makes plants expend energy to repair the damage. Purdue’s Sujith Puthiyaveetil, an assistant professor of biochemistry, is interested in determining how plants repair their photosystems, and he recently received a $500,000 grant from the U.S. Department of Energy to find out.

“The water-splitting activity of photosystem II is a remarkable chemical feat. With it, however, comes an inherent risk for photodamage,” said Puthiyaveetil, who is a member of the Purdue Center for Plant Biology.

The light-induced damage to photosystem II occurs even in low light, but high-intensity light exacerbates it. An hour of bright sunlight on a summer day can breakdown all of photosystem II in a square meter leaf area in a plant.

Sujith Puthiyaveetil will use a U.S. Department of Energy grant to explore the mechanisms plants use to repair photosystems suffering light-induced damage. (Pudue Agricultural Communication photo/Tom Campbell) Sujith Puthiyaveetil will use a U.S. Department of Energy grant to explore the mechanisms plants use to repair photosystems suffering light-induced damage. (Pudue Agricultural Communication photo/Tom Campbell)

Understanding how the plant photosystem II is damaged and how it repairs itself could lead to plants designed to withstand more light or more easily fix their photosystems, freeing up energy and resources for plant growth and reproduction.

“Light-induced photosystem damage is the plant equivalent of sunburn,” Puthiyaveetil said. “The photosystem becomes defective. It repairs itself through a robust and ingenious mechanism, but we don’t fully understand the intricacies of it.”

Scientists know that in light, photosystem II undergoes phosphorylation in several places. The addition of these phosphate groups to photosystem II proteins likely aids in the disassembly of damaged photosystems and their eventual repair.

“Phosphorylation likely loosens the molecular glue that binds photosystem components together,” Puthiyaveetil said. “Our research aims to tease apart the complex relationship between damage, disassembly and phosphorylation.

“Photosystem II is a huge pigment-protein complex and if a plant had to replace the entire 30 or so of its protein subunits, it would be very costly,” Puthiyaveetil added. “Instead, it seems to replace the only one or two subunits that are damaged.”

He likened it to having a vehicle break down. Rather than buying an expensive new car, the owner might be able to replace one or two damaged parts and get back on the road.

Puthiyaveetil’s co-principal investigator, Amit Dhingra, a professor of genomics and biotechnology from Washington State University, will engineer tobacco plants that lack photosystem II phosphorylation sites or replace them with glutamate residues, which look as if the phosphorylation is always on. This forces the repair mechanisms to go to work, allowing Puthiyaveetil’s lab to study the precise role of phosphorylation in photosystem II repair.

“Photosystem II repair is a highly orchestrated molecular origami and elucidating its basic mechanisms informs about photosynthetic light energy conversion,” Puthiyaveetil said.

Featured Stories

Professor adjusts equipment in Pilot Plant.
Purdue launches institute to help farmers commercialize new value-added products

A newly formed institute at Purdue University is offering training and development support to...

Read More
Bag of chips
Most surveyed grocery shoppers report noticing shrinkflation

Over three-quarters of surveyed consumers say they have noticed shrinkflation at the grocery...

Read More
Hand-held device with a screen displaying colored thermal camera images
Purdue wildlife and aviation programs collaborate on deer population study

An outbreak of often-fatal epizootic hemorrhagic disease (EHD) afflicted more than 500...

Read More
Veterans learning how to care for bee hives.
From service to soil: veterans find new purpose in agriculture through AgrAbility

In 2022, after serving in the Army for 30 years, Colonel Joe Ricker began exploring his next...

Read More
Memorial Mall: Farmer Sentiment in October
Farmer sentiment in October rebounded ahead of the U.S. election

Farmer sentiment saw an unexpected surge in October ahead of the upcoming U.S. election,...

Read More
Jong Yoon Jeon
Jong Yoon Jeon - Graduate Ag Research Spotlight

Jong Yoon Jeon credits his father with inspiring a love of the outdoors by showing Jong Yoon ...

Read More
To Top