Skip to Main Content

grant-will-help-purdue-scientist-develop-rapid-test-for-produce-safety

Foodborne illnesses linked to produce make regular news headlines these days. The U.S. Food and Drug Administration (FDA) has investigated outbreaks of Salmonella, Listeria and E. coli related to mushrooms, peaches, onions and clover sprouts just this year. FDA averages more than a dozen similar outbreaks annually.

Detecting contamination in the field is difficult because samples must be sent off to labs that can take several days to report results. But Purdue University biological engineer Mohit Verma is developing a test that could take less than an hour and help producers track the source of contamination. His efforts have been boosted by a nearly $400,000 grant from the Center for Produce Safety.

verma05947.jpg
Mohit Verma

“The source of these contaminations is often wild animals or dispersion of bacteria from nearby animal feeding operations. Right now, it’s hard to test with enough frequency to catch these contaminations before produce is already harvested,” said Verma, an assistant professor of agricultural and biological engineering. “Since an entire field is currently tested as a whole, a positive contamination result from a lab leads to the loss of the entire field. Our technology would allow for multiple frequent tests that would significantly reduce the likelihood of losing an entire crop or sending contaminated food to consumers.”

Verma has been developing paper-based tests for bovine respiratory disease (BRD), an illness responsible for $900 million in losses to dairy and beef operators each year. The versatility of the technology has allowed Verma to adapt the work to this project, as well as development of a rapid COVID-19 test.

Much like a home pregnancy test, a sample from a field would be loaded onto a paper assay strip in a plastic cartridge. A biochemical reaction would alert a grower to the presence of bacteria that would be harmful to human health.

While pregnancy tests only require one particular hormone to signal a positive test, Verma’s sensors would alert to particular segments of DNA that are specific to the problem bacteria and the animals associated with them. The test, therefore, could tell a producer that contamination detected in a particular part of a field came from pigs.

“You can be specific about the areas you need to assess further and develop a heat map to determine where the contamination is coming from,” Verma said.

The two-year grant will allow Verma’s team to first identify normal background amounts of bacteria present in produce fields and improve the sensor technology to identify low levels of multiple bacterial contaminants in one test.

Featured Stories

a man standing with cows
Graduate Student Spotlight: Lester Nolasco

Lester Nolasco is a Ph.D. student in the Purdue Animal Sciences Department, and he is under the...

Read More
Houseplant hanging in house
Unleash your inner gardener: discover the joy of houseplants this season

Winter days can be dark and dreary, but Karen Mitchell, consumer horticulture Extension...

Read More
Marquee sign at the 2024 Purdue Ag Alumni Fish Fry.
Purdue Ag Alumni Fish Fry to be hosted at the Tippecanoe County Fairgrounds

WEST LAFAYETTE, Ind. — The 2025 Purdue Ag Alumni Fish Fry will take place Feb. 1 at the...

Read More
Ag Barometer Image
Farmer sentiment drifts lower while producers remain optimistic about the future

Farmer sentiment drifted lower in December as the Purdue University/CME Group Ag Economy...

Read More
Young girl eating vegetables
Heartland Children's Nutrition Collaborative awards inaugural grants to fuel joint IU and Purdue research on pediatric health and nutrition concerns

The Indiana University School of Medicine Department of Pediatrics and the Purdue University...

Read More
Lynda Godwin Peter
Lynda Godwin Peter - Graduate Ag Research Spotlight

Growing up in Lagos, Nigeria, Lynda Godwin Peter helped her parents in the family garden,...

Read More
To Top