Skip to Main Content

Plant defense layer has unexpected effect on volatile compounds, study finds

A Purdue University biochemist and her colleagues have pioneered new methods for increasing production of volatile compounds important for plant defenses and for use in biofuels, pharmaceuticals and other products. While investigating how plants can more efficiently emit those compounds, Natalia Dudareva’s team also found an unanticipated factor playing a role in plant cellular functions.

Dudareva’s team had previously analyzed emission of volatile compounds through plasma membranes and was working on simplifying passage through the cuticle, a waxy substance on the surface of plant organs that is part of a plant’s defenses against pathogens and pests. The cuticle also helps plants retain water, and similarly can trap volatile compounds in tissues.

The solution, the team thought, would be to thin the cuticle. The lab did so by manually removing some of the cuticle from petunia flowers and developing genetically altered petunias that had thinner cuticles.

“If the cuticle serves as a barrier on the outside of a flower, logically you would think that a thinner cuticle  would make it easier for plant volatile compounds to move through it,” said Dudareva, a distinguished professor of biochemistry and interim director of the Purdue Center for Plant Biology. “We saw the opposite, however. Thinning the cuticle led to decreased volatile compound emissions and even less production of these compounds in the plants overall.”

Prior to these findings, which were published in the journal Nature Chemical Biology, the cuticle wasn’t known to play any role in internal volatile metabolism. The team, which also included biochemistry postdoctoral researcher Pan Liao and chemical engineering graduate student Rick Ray, found that the key issue is that hydrophobic volatile compounds are attracted to accumulating in the hydrophobic cuticle, which prevents internal cellular buildup.

“When we made the cuticle thinner, we reduced the amount of volatile storage,” said Joseph Lynch, a research scientist in Dudareva’s lab. “With no place to go, producing the same amount of volatiles would have been toxic to the plant. The cells either had to reduce the production of volatiles or die.”

John Morgan, professor of chemical engineering, said the findings allowed the team to coin the term “volatile emission factor,” which is the ratio of the rate of volatile emitted to the rate of volatiles being synthesized in the plant. The parameter should be applicable to any plant volatile.

“We chemical engineers get excited about dimensionless numbers, and we had the opportunity to develop one here,” Morgan said. “We hope that people adopt this in their work.”

Going forward, Dudareva and her team will continue working on methods to increase emission of volatile compounds in plants, including investigating how thickening the cuticle might affect production and emissions.

“We learned that the cuticle is a sink, and if you don’t have that sink, the cells shut down production of those volatiles,” Dudareva said. “This makes increasing emissions more complicated than we once thought, but sheds light on factors that can affect production of these compounds.”

The National Science Foundation and the U.S. Department of Agriculture’s National Institute of Food and Agriculture funded this work.

Natalia Dudareva and colleagues found that the cuticle of petunia flowers acts as a sink for volatile compounds. Rather than emitting more of these compounds when the cuticle is thinned, the plants produced fewer. The findings give scientists more information about how the cuticle can play important roles in plant cellular functions. (Purdue Agricultural Communication photo/Tom Campbell) Natalia Dudareva and colleagues found that the cuticle of petunia flowers acts as a sink for volatile compounds. Rather than emitting more of these compounds when the cuticle is thinned, the plants produced fewer. The findings give scientists more information about how the cuticle can play important roles in plant cellular functions. (Purdue Agricultural Communication photo/Tom Campbell)

Featured Stories

Piglets
Combined microbiome datasets yield accurate prediction of animal ages

An analysis combining the results of 14 studies from around the globe has uncovered some common...

Read More
A hand holding two eggs
Rehabilitation through agricultural skills with Purdue Farmer-to-Farmer Trinidad and Tobago

Gardening and poultry care are sometimes seen as trendy hobbies in the U.S., but in Trinidad and...

Read More
Claire King waters her quinoa in the greenhouse.
Claire King named a Golden Opportunity Scholar

It’s easy to imagine the whole of agriculture as a giant feast sprawled out on an equally...

Read More
Logos for the American Fisheries Society, Society of American Forestry and The Wildlife Society conventions/conferences
FNR Research Was Well-Represented at Fall Organizational Conferences

Purdue Forestry and Natural Resources and the cutting-edge research being performed by its...

Read More
corn silk
Understanding Black Layer Formation in Corn

The use of the term “black layer” is often a universal method among farmers and...

Read More
corn silk
Paying Attention to In-Season Nitrogen Timing is Important when following a Rye Cover Crop

Managing and maintaining a high-yielding corn crop following a cereal rye cover crop can often be...

Read More
To Top