Mayflies' Reaction to Pollutants Differs by Population

Mayflies riverIn toxicology, there is an assumption that all populations of species are the same. A recent study by graduate research assistant D. Riley Rackliffe and associate professor of vertebrate ecology Jason Hoverman aimed to test that assumption and found dramatic variation in how mayfly (Heptageniidae) populations reacted to pollutants.

“We often look at species as homogeneous across their range, aka, a mayfly from one creek in Michigan is the same as a mayfly from Indiana so long as they are the same species,” Rackliffe explained. “This is particularly important in how they respond to pollution. This study demonstrates that populations of the same species from different places responded differently to the same pollutant. So, you can't just find out what amount of pollution one population can handle and assume all other mayflies are equally tolerant to it.”

Mayflies
In fact, Hoverman and Rackliffe’s research found that mayfly sensitivity to neonicotinoids, an agricultural insecticide, may vary as much as 6.5 times between different mayfly populations.

“Whether the variation in pesticide tolerance is the result of inherent differences in the populations or an evolutionary response to pesticide exposure is an open question in mayflies,” Hoverman notes.

Regardless, this research has far reaching implications especially to those responsible for assessing the toxicity of pesticides, as pesticides must be assessed regarding potential damage to the environment as part of the licensing process.

“As part of this process they test it on various organisms to see how toxic it is,” Rackliffe said. “This (study) demonstrates that we could be underestimating the environmental risk of pesticides if our test organism comes from unusually tolerant populations. It also has implications for people concerned about water quality as we often use mayflies as "canaries in the coal mine" to tell us if a body of water is polluted. What if the canaries (the mayflies) are evolving greater tolerance to the pollutants?”
Mayflies
The study, which seeks further explanations regarding variation in responses to pesticides, is at the heart of Rackliffe’s research. It also builds upon other studies that have found variation in pesticide tolerance in other organisms like frogs.

“Understanding why some populations tolerate exposure to pesticides while others are heavily impacted may allow us to preserve biodiversity that might otherwise be lost,” Rackliffe added. “This could be done by establishing appropriate pesticide-free refuges, carefully monitoring the amount of pesticides used, or creating ways to keep pesticides from leaving the target areas (fields) and entering non-target habitats (creeks).”

Read Rackliffe and Hoverman’s paper “Population-level variation in neonicotinoid tolerance in nymphs of Heptageniidae in Environmental Pollution’s October 2020 issue. The abstract is available here: Population-level variation in neonicotinoid tolerance in nymphs of the Heptageniidae

Featured Stories

Marisol Sepúlveda, professor of forestry and natural resources, speaks at the front of her class on One Health topics.
Applying One Health in the Classroom

Marisol Sepúlveda, professor of forestry and natural resources, created a new course for...

Read More
close up of pink poinsettia flower
Pampering your poinsettia and crafting poinsettia plant pressings after the holidays

White snow, twinkling lights, brass menorahs, Kwanzaa unity cups and a red-and-green potted...

Read More
Students in the ANSC 360 Product Show stand behind display tables, offering samples of value-added meat products and speaking with attendees in the lobby of Creighton Hall.
ANSC 360 Product Show highlights meat innovation

ANSC 360 students showcased value-added meat products during their product show.

Read More
Young girl grocery shopping with father.
Food survey shows consumer perceptions during government shutdown

The household food insecurity rate posted the largest increase so far this year, rising from...

Read More
Blaine Wagner poses with laboratory equipment
Driven by curiosity: Blaine's journey in biochemistry

For Blaine Wagner, growing up in Greensburg, Indiana, meant being surrounded by agriculture. He...

Read More
Purdue Top Farmer Conference 2025
2026 Top Farmer Conference explores global competitiveness, tariffs, long-run market outlooks

Registration is now open for Purdue University’s annual Top Farmer Conference, one of the...

Read More